Let $l\ge 0$ be an integer.
In the process of solving A tough series related with a hypergeometric function with quarter integer parameters we have discovered the following identity: \begin{eqnarray} \frac{1}{4} \sum\limits_{j=0}^{l-1} \sum\limits_{\begin{array}{r} p=-l-1\\p\neq -1 \end{array}}^{l-1} \binom{-3/2}{j} \binom{-1/2}{l-1-j} \frac{\binom{2j+1}{p+j+1} - \binom{2j+1}{p+j+2}}{2^{2 j+1}}\cdot \frac{(-1)^{p+l}}{p+1}\cdot \left( 1+(-1)^p\right)=\frac{(1/2)^{(l)}}{l!}-1 \end{eqnarray} Is it possible to prove that identity in some other way, i.e. without resorting to the calculations in the aforementioned question?