1

How to calculate the following integral if $\varepsilon \in (0,1)$: $$\int \limits_{0}^{\pi}\frac{d\varphi}{(1+\varepsilon\cos \varphi)^2}$$

RFZ
  • 16,814

3 Answers3

2

Hint: Use the substitution $$ s=\tan{\frac{\varphi}{2}}, \quad \sin{\varphi}=\frac{2s}{s^2+1}, \quad \cos{\varphi} = \frac{1-s^2}{s^2+1}. $$

(Apparently more details are given in this answer.)

Mårten W
  • 3,480
  • You mean to make substitution $\varphi=\tan \frac{t}{2}$? – RFZ Sep 28 '17 at 18:14
  • @RFZ: No, it would be (as in my answer) $s=2\arctan{\varphi}$. – Mårten W Sep 28 '17 at 18:15
  • I have applied trigonometric substitution and I have got the following integral $\int \limits_{0}^{\infty}\dfrac{(1+u^2)du}{(1+u^2+\varepsilon-\varepsilon u^2)^2}$ and I stuck – RFZ Sep 29 '17 at 10:36
  • @RFZ: You're missing a factor two in the numerator, but otherwise it looks good. Next thing to do is bring the denominator to the form $(1+v^2)^2$. Do you see what substitution accomplishes this (there are two)? – Mårten W Sep 29 '17 at 11:28
1

Complex analysis approach: by letting $z=e^{i\varphi}$ we obtain \begin{align*} \int_{0}^{\pi}\frac{d\varphi}{(1+\varepsilon\cos \varphi)^2}&= \frac{1}{2}\int \limits_{-\pi}^{\pi}\frac{d\varphi}{(1+\varepsilon\cos \varphi)^2}\\ &=\frac{1}{2}\int \limits_{|z|=1}\frac{1}{(1+\varepsilon(z+1/z)/2)^2}\cdot \frac{dz}{iz}\\ &=\frac{2}{i}\int \limits_{|z|=1}\frac{z}{(\varepsilon z^2+2z+\varepsilon)^2}\,dz\\ &=\frac{4\pi}{\varepsilon^2}\,\mbox{Res}\left(\frac{z}{ (z-w_+)^2(z-w_-)^2},w_+ \right)\\ &=\frac{\pi}{(1-\varepsilon^2)^{3/2}}. \end{align*} where $\displaystyle w_{\pm}=\frac{\pm\sqrt{1-\varepsilon^2}-1}{\varepsilon}$.

Robert Z
  • 145,942
0

$$\int \frac{d\varphi}{(1+\varepsilon\cos\varphi)^2} = -\frac{1}{(1-\varepsilon^2)}\Bigg[\frac{\varepsilon\sin\varphi}{1+\varepsilon\cos\varphi}-\int \frac{d\varphi}{1+\varepsilon\cos\varphi}\Bigg]$$

Table of Integrals, Series, And Products 7th ed 2.554.3

G_D
  • 193