Let $f:[0,\infty )\rightarrow \mathbb{R}$ be an increasing function, such that $\lim_{x\rightarrow \infty }\frac{1}{x^{2}}\cdot \int_{0}^{x}f(t)dt=1$.
Prove that exists $\lim_{x\rightarrow \infty }\frac{f(x)}{x}$ and calculate this limit.
If $f$ would be continuous, we'd have $1=\lim_{x\rightarrow \infty }\frac{1}{x^{2}}\cdot \int_{0}^{x}f(t)dt=\lim_{x\rightarrow \infty }\frac{f(x)}{2x}$, therefore $\lim_{x\rightarrow \infty }\frac{f(x)}{x}=2.$
But we don't know if $f$ is continuous or not, and I wasn't able to find any other idea.