Evaluating $\displaystyle \int_{0}^{2\pi}\frac{1}{4\cos^2 t + 9\sin^2 t} dt$
Can someone show me a way using Complex Analysis methods? This is what I tried:
Let $C$ be the contour defined by $C(t)= 2\cos t + 3i\sin t$, $0 \leq t \leq 2\pi$.
Considering the integral
$$I= \int_{C}\frac{dz}{z}= 2\pi i$$
by Cauchy's Integral Formula, then also
$$I = \int_{C}\frac{\overline{z}}{|z|^2}= \int_{0}^{2\pi}\frac{2\cos t - 3i\sin t}{4\cos^2 t + 9\sin^2 t}\cdot (-2\sin t + 3i\cos t) dt\\ = \int_{0}^{2\pi} \frac{5\sin t\cos t + 6i}{4\cos^2 t+ 9\sin^2 t}dt = 2\pi i.$$
I'm not sure where to go from here.