Why do we have$$\lim _{x\to \,0}\left(\frac{\arctan\left(x\right)-\sin\left(x\right)}{x^3}\right)=-\frac{1}{6}?$$
I used L’Hopital’s Theorem; That result is
$$\lim _{x\to 0}\left(\frac{-\frac{2x}{\left(1+x\right)^2}+\sin\left(x\right)}{6x}\right)$$
So my answer is $\frac{1}{6}$, but the answer to the result using Wolfram Alpha is $-\frac{1}{6}$.
What's wrong?