So I have to prove 2 things:
That $\lim\limits_{n \rightarrow \infty}\frac{x^n}{n!} = 0$ where $n \in \mathbb N$ and $x \in \mathbb R, x>0$.
That $\lim\limits_{n \rightarrow \infty}\frac{x^n}{n!} = 0$ where $n \in \mathbb N$ and $x \in \mathbb R$.
For #1, I know that $\frac{x^n}{n!} >0$, which means that I can find an upper bound and use squeeze theorem. For #2, I have no idea where to start.