In THIS ANSWER and THIS ONE, I provided primers on the Dirac Delta.
The notation $\int_{\tau'}^{\tau''} f(\tau)\delta(\tau-t)\,d\tau$ is interpreted to mean the functional $\langle \delta_t, fp_{[\tau',\tau'']}\rangle$.
Here, $p_{[\tau',\tau'']}$ is the "rectangular pulse" function, $p_{[\tau',\tau'']}(x)=u(x-\tau')-u(x-\tau'')$, and $u$ is the unit step (or Heaviside Function) where
$$u(x)=\begin{cases}1&,x>0\\\\0&,x<0\end{cases}$$
Note that there are various conventions for the value $u(0)$.
Therefore, we have
$$\begin{align}
\int_{\tau'}^{\tau''} f(\tau)\delta(\tau-t)\,d\tau&=\langle \delta_t,fp_{[\tau',\tau'']}\rangle\\\\
&=\begin{cases}f(t)&,t\in(\tau',\tau'')\\\\0&,t\notin [\tau',\tau'']\end{cases}\\\\
&=f(t)p_{[\tau',\tau'']}(t)\tag1
\end{align}$$
If $t=\tau'$ or if $t=\tau''$, then the value of the functional $\langle\delta_t, fp_{[\tau',\tau'']}\rangle$ is not well-defined. That is to say that as a function of $t$, the functional is (jump) discontinuous at $t=\tau'$ and $t=\tau''$.
Note, if $g(\tau)=f(-\tau)$, then the notation $\int_{\tau'}^{\tau''} f(\tau)\delta(t-\tau)\,d\tau$ is interpreted to mean the functional $\langle \delta_{-t},gp_{[-\tau'',-\tau']}\rangle$, which by virtue of $(1)$ shows that $$\int_{\tau'}^{\tau''} f(\tau)\delta(t-\tau)\,d\tau=\int_{\tau'}^{\tau''} f(\tau)\delta(\tau-t)\,d\tau$$.
Next, we have the notation
$$\begin{align}
\frac{d}{dt}\langle \delta_t ,fp_{[\tau',\tau'']}\rangle&=\langle \frac{d}{dt}\delta_t ,fp_{[\tau',\tau'']}\rangle\\\\
&=\int_{\tau'}^{\tau''}f(\tau)\frac{d}{dt}\delta(t-\tau)\,d\tau\\\\
& =\begin{cases}f'(t)&,t\in (\tau',\tau'')\\\\0&,t\notin [\tau',\tau'']\end{cases}\\\\
&=f'(t)(p_{[\tau',\tau'']})(t)
\end{align}$$
where the derivative is undefined at $t=\tau'$ and $t=\tau''$ due to the jump discontinuities.
If we interpret the derivative of the Heaviside function as the Dirac Delta distribution, then we can extend the definition of $\frac{d}{dt}\langle \delta_t ,fp_{[\tau',\tau'']}\rangle$ to include the jumps at $t=\tau'$ and $t=\tau''$. We then have in distribution
$$\langle \frac{d}{dt}\delta_t ,fp_{[\tau',\tau'']}\rangle=f'(t)p_{[\tau',\tau'']}(t)+f(\tau')\delta(t-\tau')-f(\tau'')\delta(t-\tau'')$$
which can be converted notationally to read
$$\bbox[5px,border:2px solid #C0A000]{\int_{\tau'}^{\tau''}f(\tau)\frac{d}{dt}\delta(t-\tau)\,d\tau=f'(t)p_{[\tau',\tau'']}(t)+f(\tau')\delta(t-\tau')-f(\tau'')\delta(t-\tau'')}\tag 2$$
Inasmuch as the distributional derivative is defined by
$$\langle \delta'_{t},fp_{\tau',\tau''}\rangle =-\langle \delta_{t},\left(fp_{\tau',\tau''}\right)'\rangle $$
we see that in distribution
$$\begin{align}
\langle -\delta'_{t},fp_{\tau',\tau''}\rangle&=\langle \delta_{t},\left(fp_{\tau',\tau''}\right)'\rangle\\\\
&=f'(t)p_{[\tau',\tau'']}(t)+f(t)\frac{d}{dt}p_{[\tau',\tau'']}(t)\\\\
&=f'(t)p_{[\tau',\tau'']}(t)+f(\tau')\delta(t-\tau')-f(\tau'')\delta(t-\tau'')
\end{align}$$
Hence, we have notationally
$$\bbox[5px,border:2px solid #C0A000]{\int_{\tau'}^{\tau''}\left(-\frac{d}{d\tau}\right)\delta(t-\tau)f(\tau)\,d\tau=f'(t)p_{[\tau',\tau'']}(t)+f(\tau')\delta(t-\tau')-f(\tau'')\delta(t-\tau'')}\tag 3$$
Comparing $(2)$ and $(3)$, we arrive at the equality that
$$\langle \frac{d}{dt}\delta_t ,fp_{[\tau',\tau'']}\rangle=\langle -\delta'_{t},fp_{\tau',\tau''}\rangle=f'(t)p_{[\tau',\tau'']}(t)+f(\tau')\delta(t-\tau')-f(\tau'')\delta(t-\tau'')$$
or using the alternative notation
$$\bbox[5px,border:2px solid #C0A000]{\int_{\tau'}^{\tau''} f(\tau)\left(-\frac{d}{d\tau}\right)\delta(t-\tau)\,d\tau=\int_{\tau'}^{\tau''}f(\tau)\frac{d}{dt}\delta(t-\tau)\,d\tau}$$
as was to be shown!