Given: $\{x_1,x_2,\ldots,x_n\}\subset \Bbb R^+$ and $$\text{(AM)}\ \ \ \frac{x_1+x_2+\ldots+x_n}{n}=\sqrt[n]{x_1 x_2 \ldots x_n}\ \ \ \text{(GM)}$$
Prove: $x_1=x_2=\ldots=x_n$
Background: I am a 9th grader with some experience in math contests. I always see this result but was wondering on how to prove it using simple arguments in the general $n>2$. I know how to prove the converse... it's straightforward.
My attempt (for $n=2$):
It is given that:
$$\frac{x_1+x_2}{2}=\sqrt[2]{x_1 x_2}$$
Squaring both terms and rearranging leads to:
$$x_1^2+x_2^2+2x_1x_2=4x_1x_2 \ \ \Rightarrow\ \ x_1^2+x_2^2-2x_1x_2=0 \ \ \Rightarrow\ \ (x_1-x_2)^2=0$$
This last result is true only if: $x_1=x_2$, completing the proof.
Question: How to prove when $n>2$ ? (9th grader understandable arguments please)