In this question $\mathcal{H}$ stands for a Hilbert space over $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$, with inner product $\langle\cdot\;| \;\cdot\rangle$ and the norm $\|\cdot\|$ and let $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators from $\mathcal{H}$ to $\mathcal{H}$.
Let ${\bf T} = (T_1,...,T_d) \in \mathcal{B}(\mathcal{H})^d$. $\|{\bf T}\|$ is given by \begin{eqnarray*} \|{\bf T}\| &=&\sup\left\{\bigg(\displaystyle\sum_{k=1}^d\|T_kx\|^2\bigg)^{\frac{1}{2}},\;x\in \mathcal{H},\;\|x\|=1\;\right\}. \end{eqnarray*} It is well known that for each $k\in\{1,\cdots,d\}$, we have \begin{eqnarray*} \|T_k\| &=&\sup\left\{\|T_kx\|,\;x\in \mathcal{H},\;\|x\|=1\;\right\}. \end{eqnarray*}
It is always true that $$\|{\bf T}\|=\bigg(\displaystyle\sum_{k=1}^d\|T_k\|^2\bigg)^{1/2}\;??$$
Take $\sin$ and $\cos$ on $[0, \frac{\pi}2]$. We have $\sup_\limits{x\in X} \sin x = \sup_\limits{x\in X} \cos x = 1$, but $\sup_\limits{x\in X} \big(\sin x + \cos x\big) = \sqrt{2}$. The problem is that maxima are achieved at different points. The statement from your question is of this type.
– mechanodroid Oct 15 '17 at 10:21