For a ring $R$, adjoint a inverse of an element $a\in R$ by taking $R[\frac{1}{a}]\cong R[x]/<ax-1>$.
I am stucking on constructing an explicit example such that $\frac{u}{a^m} = \frac{v}{a^n}$ but $ua^n \ne va^m$. I know that to do this I require $a$ is not a nilpotent (I have deduced that if it is nilpotent then we would always have a zero ring) and $R$ not an integral domain.
So could someone tell me how to construct it, please?
Thanks for any help.