COMMENT. Something that has been happening in recent months is that MSE beginners post difficult problems that most likely do so with all deliberation. I want here to report some facts mentioned by L. J. Mordell in relation to the proposed problem.
(Note that $x ^ p$ is more general than $p ^ p$).
Euler had already shown that the equation $y^2-1=x^3$ has the only solutions $x=0,-1,2$. For the prime $p\gt3$, Nagell proved that if
$$y^2-1=x^p$$ then one has
$$p\equiv 1\pmod8\text{ and } y\equiv 0\pmod p$$ furthermore
$$y\pm1=2x_1^p\text { and }y\mp2{p-1}x_2^p$$ so that
$$x_1^p-2^{p-2}x_2^p=\pm 1\\\text { and }p\text{ divides }\frac{x^p+1}{x+1}\text { but } p^2\text {does not divide }\frac{x^p+1}{x+1}$$
Furthermore if $x_1+y_1\sqrt p$ is the fundamental unit of $\mathbb Q(\sqrt p)$ then
$x_1+y_1\equiv 1\pmod 8$ this condition being equivalent to the fact that $2$ is a biquadratic residue of $p$.
►T. Nagell. Sur l’impossibilité de l’équation indéterminée $z^p+1=y^2$. Norsk Mat. Forenings Skrifter, $\mathbf 1$ (1921),Nr. 4.
►T. Nagell. Sur une equation à deux indéterminées.Norsk Vid. Selsk Forh. $\mathbf 7$ (1934) p. 136-139.
Mordell adds “We conclude this section by mentioning the impossibility of the equations
$$y^3=x^p+1, \space |x|\gt 1,\space\space \text{ Nagell }\\ y^3=x^p-1, \space |x|\gt 2,\space\space \text{ Nagell }\\y^4=x^p+1\text{ Selberg }$$
The last result is now a special case of Chao Ko’s theorem.”
►Chao Ko. On the diophantine equation $x^2=y^n+1,\space xy\ne 0$. Scientia Sinica (Notes),$\mathbf {14}$ (1964),p.457-460.