Let $(\mathcal F_n)$ be a filtration and $\tau$ be a stopping time with values in $\mathbb N \cup \{\infty\}$.
Let $\mathcal F_\infty$ be the sigma-algebra generated by $\cup_n \mathcal F_n$. Define $$\begin{align}\mathcal F_\tau &=\{A\in \mathcal F_\infty, \forall n\in \mathbb N,\; A\cap (\tau =n)\in \mathcal F_n \}\\ &=\{A\in \mathcal F_\infty, \forall n\in \mathbb N,\; A\cap (\tau \leq n)\in \mathcal F_n \} \end{align} $$
$\mathcal F_\tau$ is referred to in Klenke as the "$\sigma$-algebra of $\tau$-past", and in Gut as the "pre-$\tau-\sigma$-algebra".
What's the intuition behind $\mathcal F_\tau$ ? Why does it have the names I just mentionned ?