Will represent a polynomial with rational coefficients:
$p_n(x)=\sum_{i=0}^{n} {a_i x^i},{a_i}\epsilon\mathbb{Q},a_n \ne{0},i\epsilon\overline{1,n},n\epsilon\mathbb{N},n\ge{2}$
that has an irrational root:
$p_n(a+\sqrt{b})=0, a,b\epsilon\mathbb{Q},b\gt0$
This polynomial solution becomes:
$p_n(a+\sqrt{b})=a_0+a_1(a+\sqrt{b})^1+...+a_n(a+\sqrt{b})^n =0$
Analyzing the irrational factor in the k-term:
$(a+\sqrt{b})^k=s_k+q_k\sqrt{b}, s_k, q_k\epsilon\mathbb{Q}$
then a conjugated form could be deducted for the conjugate:
$(a-\sqrt{b})^k=s_k-q_k\sqrt{b}$
This result could be applied to the solution:
$p_n(a+\sqrt{b})=S_n+Q_n\sqrt{b}=0 {\Rightarrow}S_n=Q_n=0$
However,
$\left.\begin{array}{rl}p_n(a-\sqrt{b})&=&S_n-Q_n\sqrt{b}\\S_n&=&Q_n=0\end{array}\right\}{\Rightarrow}p_n(a-\sqrt{b})=0(\therefore)$