-3

The question tells me that i can use $x=(x+y)-y$ and $|x+y|≤|x|+|y|$ to prove. But i don't know where to use $x=(x+y)-y$.

Till now,i only get that $-|x|-|y|≤|x+y|$ from the use of $|x|≤A$,$-A≤x≤A$

Harry Alli
  • 2,091

1 Answers1

3

$$ \lvert x \rvert = \lvert (x+y)-y \rvert \\ \leq \lvert x+y \rvert + \lvert -y \rvert = \lvert x+y \rvert + \lvert y \rvert,. $$ the first equality being the first part of the hint, the second being the inequality in the hint, albeit with symbols with different names (write $z=x+y$, $w=-y$, then one has $\lvert z+w \rvert \leq \lvert z \rvert + \lvert w \rvert$ using the hint: it doesn't just mean the original $x$ and $y$, but any numbers).

Chappers
  • 67,606