Can anyone help me find $\arg(z)$ of $5e^{-i\frac{3\pi}2}$ ?
Thank you
Can anyone help me find $\arg(z)$ of $5e^{-i\frac{3\pi}2}$ ?
Thank you
Using How to prove Euler's formula: $e^{it}=\cos t +i\sin t$?,
$$5e^{-3i\pi/2}=5\cos\left(-\dfrac{3\pi}2\right)+i\cdot5\sin\left(-\dfrac{3\pi}2\right)=5i\sin\left(-2\pi+\dfrac\pi2\right)=5i$$
Now use the Definition of atan$2(y,x)$
Following GeorgeCoote's comment:
$$z=|z|\exp(i\arg z),$$
in which $0\leq\arg z< 2\pi$.
Your expression is $z=5\exp(-i\frac{3}{2}\pi)=5\exp\left[i(-\frac{3}{2}\pi)\right]=5\exp\left[i(-\frac{3}{2}\pi+2\pi k)\right]$.
You would get $\arg z= -3/2\pi +2\pi k$ for $k=1$ the value is between $0$ and $2\pi$ hence $\arg z = -3/2\pi +2\pi=\pi/2$.