We got introduced to the Chinese Reminder Theorem, but I still haven't quite grasped it and I have a problem that asks:
Find $x \bmod 77$ if $x \equiv 2 \pmod 7$ and $x \equiv 4 \pmod {11}$.
My attempt was like so: $$B = 7 * 77 * 11 = 5929$$ $$B_{1} = \frac{5929}{77} = 77$$ Using $B_{1}*x_{1} \equiv 1 \pmod {77}$: $$77x_{1} \equiv 1 \pmod {77} $$ $$x_{1} \equiv 78 \pmod {77}$$ So then would the $x$ be $78$?