I try to apply the chinese rest theorem. This is how I tried to do it. $$ \begin{cases} x \equiv 3(mod \quad 83)\\ x \equiv 3(mod \quad 47) \end{cases} $$ First I want to know if a solution exists, so I take $sgd(83,47)$. Applying Euklides algorithm.
$$ 83=47*1+36 \implies \\47 = 36*1 + 11 \implies \\36=11*3+3 \implies \\11=3*3 + 2 \implies \\3=2*1 + 1 \implies \\2 = 1*2 + 0 $$ So $sgd(83,47) = 1$, solution exist. Applying Euklides algorithm backwards to find $1=83u+47v$. $$ 1=3-2 \implies \\1=3-(11-3*3) \implies\\ 1=3*4-(47-36) \implies \\ ... \implies \\1=17(83)-30(47) $$ So $u=17$ and $v=-30$. We know that $x_{0} = a_{2}m_{1}u+a_{1}m_{2}v$, so $x_{0} = 3*83*17-3*47*30 \implies x_{0}=2823$.
Now $x$ should be $x=2823+(83*47)n \implies x=2823 + 3801n$.
So when $n=1$ the answer should be $x=6624$ but it is wrong, the answer is $x=3904$. Where have I done wrong?