Given that this particular series is convergent by the integral test $$ \sum_{i=1}^{\infty} \frac{1}{n^2+1}$$
how can one find the value to which it converges?
Integral test:
\begin{align*} \int_1^{\infty} \frac{1}{x^2+1} \ dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{x^2+1} = \lim_{a \to \infty} \left[ \arctan(a) - \arctan(1) \right]= \frac{\pi}{4} \end{align*}