0

Given that this particular series is convergent by the integral test $$ \sum_{i=1}^{\infty} \frac{1}{n^2+1}$$

how can one find the value to which it converges?

Integral test:

\begin{align*} \int_1^{\infty} \frac{1}{x^2+1} \ dx = \lim_{a \to \infty} \int_{1}^{a} \frac{1}{x^2+1} = \lim_{a \to \infty} \left[ \arctan(a) - \arctan(1) \right]= \frac{\pi}{4} \end{align*}

StubbornAtom
  • 17,052
bru1987
  • 2,147
  • 5
  • 25
  • 50

0 Answers0