0

Honestly, have no idea, I know that the $\cos2x$ turns into $1-\sin x$, but after that i'm not sure. Help is greatly appreciated

4 Answers4

3

$4 \cos^2 x − \sin^2 (2x) + 5 \sin^2 x = 4$; $ \sin^2 x − \sin^2 (2x) = 0$, $$ (\sin x − \sin 2x)(\sin x + \sin 2x) = 0$$ $$\sin^2x(1-2 \cos x)(1+2 \cos x)=0$$ Can you finish?

Vasili
  • 10,690
1

$$4-4\sin^2x\cos^2x+\sin^2x=4,$$ which gives $\sin{x}=0$ and $\{0,\pi,2\pi\}$

or $$4\cos^2x-1=0$$ or $$2(1+\cos2x)-1=0$$ or $$\cos2x=-\frac{1}{2},$$ which gives $$\left\{\frac{2\pi}{3},\frac{\pi}{3},\frac{4\pi}{3},\frac{5\pi}{3}\right\}$$

1

Compute this,

$$4(1-\sin^2(x)) - 4\sin^2(x)(1-\sin^2(x))+5\sin^2(x) = 4, x \in [0, 2\pi]$$

Then, you get.

$$\sin^2(x)(4\sin^2(x)-3) = 0$$

$$\sin^2(x) = \frac34, 0$$

$$\sin(x) = \pm\frac{\sqrt 3}2, 0$$

which gives, $$ x = [0, \frac\pi3, \frac{2\pi}3, \pi, \frac{4\pi}3, \frac{5\pi}3, 2\pi]$$

0

$4 \cos^2 x − \sin^2 (2x) + 5 \sin^2 x = 4$

$4 \cos^2 x + 4 \sin^2 x− \sin^2 (2x) +\sin^2 x = 4$

$4 − \sin^2 (2x) +\sin^2 x = 4$

$− \sin^2 (2x) +\sin^2 x = 0$

$-2 \sin^2 x\cos^2 x +\sin^2 x=0 $

$\sin^2 x \left(\cos^2 x -\frac{1}{2} \right)=0.$

$x=0\vee x=\pi\vee x=2\pi \vee x=\frac{\pi}{4}\vee x=\frac{3\pi}{4}\vee x=\frac{5\pi}{4}\vee x=\frac{7\pi}{4}$