the beginning is to solve
$$ 17 t \equiv 1 \pmod {350}. $$
This is often called the Extanded Euclidean Algorithm, I prefer the continued fraction way of writing this:
$$ \gcd( 350, 17 ) = ??? $$
$$ \frac{ 350 }{ 17 } = 20 + \frac{ 10 }{ 17 } $$
$$ \frac{ 17 }{ 10 } = 1 + \frac{ 7 }{ 10 } $$
$$ \frac{ 10 }{ 7 } = 1 + \frac{ 3 }{ 7 } $$
$$ \frac{ 7 }{ 3 } = 2 + \frac{ 1 }{ 3 } $$
$$ \frac{ 3 }{ 1 } = 3 + \frac{ 0 }{ 1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccc}
& & 20 & & 1 & & 1 & & 2 & & 3 & \\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 20 }{ 1 } & & \frac{ 21 }{ 1 } & & \frac{ 41 }{ 2 } & & \frac{ 103 }{ 5 } & & \frac{ 350 }{ 17 }
\end{array}
$$
$$ $$
$$
\begin{array}{ccc}
\frac{ 1 }{ 0 } & \mbox{digit} & 20 \\
\frac{ 20 }{ 1 } & \mbox{digit} & 1 \\
\frac{ 21 }{ 1 } & \mbox{digit} & 1 \\
\frac{ 41 }{ 2 } & \mbox{digit} & 2 \\
\frac{ 103 }{ 5 } & \mbox{digit} & 3 \\
\frac{ 350 }{ 17 } & \mbox{digit} & 0 \\
\end{array}
$$
$$ 350 \cdot 5 - 17 \cdot 103 = -1 $$
$$ -350 \cdot 5 + 17 \cdot 103 = 1 $$
$$ 103 \cdot 17 \equiv 1 \pmod {350}, $$
$$ \frac{1}{17} \equiv 103 \pmod {350}. $$
$$ (27 \cdot 103) \cdot 17 \equiv 27 \pmod {350}. $$