The problem is the following: For each $a \in \Bbb{Z}$ work out $\gcd(3^{16} \cdot 2a + 10, 3^{17} \cdot a + 66)$
This is what I have at the moment:
Let's call $d = \gcd(3^{16} \cdot 2a + 10, 3^{17} \cdot a + 66)$
Then $d \ \vert \ 3^{16} \cdot 2a + 10 \ \land d \ \vert \ 3^{17} \cdot a + 66$
$\Rightarrow d \ \vert \ (3^{16} \cdot 2a + 10) \cdot 3 \ \land \ d \ \vert \ (3^{17} \cdot a + 66) \cdot 2$
$\Rightarrow d \ \vert \ 3^{16} \cdot 6a + 30 \ \land \ d \ \vert \ 3^{16} \cdot 6a + 132$
$\Rightarrow d \ \vert \ 3^{16} \cdot 6a + 132 - (3^{16} \cdot 6a + 30) \ = \ 102 \ = \ 2 \cdot 3 \cdot 17$
Also, $d \ \vert \ (3^{16} \cdot 2a + 10) \cdot 33 \ \land \ d \ \vert \ (3^{17} \cdot a + 66) \cdot 5$
$\Rightarrow d \ \vert \ 3^{17} \cdot 17a$ (almost with the same method as before)
So I get $d \ \vert \ 102 \ \land d \ \vert \ 3^{17} \cdot 17a$
After this, I can't see how to continue.