2

Let $m\ge 1$ be an integer and let $0 < z < 4(m-1)^{m-1}/m^m$ be a real number. We consider the following sum: \begin{equation} {\mathcal S}^{(m)}_2(z):= \sum\limits_{i=0}^\infty \frac{\binom{m\cdot i}{i}}{\binom{2 \cdot i}{i}} \cdot \frac{z^i}{2 \cdot i+1} \end{equation} Now, by using the integrals represetation of the Euler' beta function and by using Yet another family of hypergeometric sums that has a closed form solution. we have found the following integral representation of our sum. We have: \begin{equation} {\mathcal S}^{(m)}_2(z)=\frac{1}{\sqrt{z}} \int\limits_1^x \frac{1}{\xi^{m/2} \sqrt{1-\xi+\frac{z}{4} \xi^m}} d\xi \end{equation} Here $x:=x(z)$ is a solution to the equation \begin{equation} 1-x+\frac{z}{4} x^m=0 \end{equation} which has the property that is the closest to untity.

For $m=1,2$ we get the following closed form solutions: \begin{equation} \left\{ {\mathcal S}^{(m)}_2(z) \right\}_{m=1}^2 = \left\{\frac{2 \pi -4 \arcsin\left(\frac{\sqrt{4-z}}{2}\right)}{\sqrt{4-z} \sqrt{z}},\frac{\log \left(\frac{\sqrt{z}+1}{\sqrt{1-z}}\right)}{\sqrt{z}}\right\} \end{equation} It is clear that for $m > 2$ the result will include some special functions, probably elliptic functions, as any CAS (Mathematica) will indicate. Unfortunately my knowledge about elliptic functions is very scarce and I do not want to copy and paste some enormous and ugly outputs from Mathematica without understanding how that result was actually obtained. Therefore I am asking a question how do we evaluate the integral above for $m > 2$?

Przemo
  • 11,331

1 Answers1

2

I am going to present a solution for $m=4$. It is clear that the integral in question has the form: \begin{equation} \sqrt{z} {\mathcal S}^{(4)}_2(z) = \int\limits_1^x \frac{R_1(\xi)}{w} d\xi \end{equation} where $R_1(\xi) = 1/\xi^2$ is a rational function and $w:=\sqrt{1-\xi+z/4 \cdot \xi^4}$ is a square root of a quartic polynomial . Therefore following the recipe from http://mathworld.wolfram.com/EllipticIntegral.html we can reduce the result to elementary functions and to incomplete elliptic integrals of the first, the second and the third kind $F(\phi,k)$, $E(\phi,k)$ and $\Pi(n;\phi,k)$ only. We adopt the notations as in the link above and we only state the result.

For a given value of $0<z< 4 \cdot 27/256$ we solve the equation \begin{equation} 1-\xi+\frac{z}{4} \xi^4=0 \end{equation} The roots are always such that the first two are complex conjugate and the remaining ones are real. Now, we define: \begin{equation} \left\{b_1,b_2,c_1,c_2\right\}:=\left\{Re[\xi^{(1)}],-Re[\xi^{(1)}],|\xi^{(1)}|^2,\xi^{(3)} \xi^{(4)}\right\} \end{equation} Now, we solve a quadratic equation: \begin{equation} (1-\lambda)(c_1-\lambda-c_2)-(b_1-\lambda b_2)^2=0 \end{equation} and out of the two solutions $\lambda_{1,2}$ we construct the following quantities: \begin{eqnarray} \left\{\alpha,\beta\right\}&:=& \left\{\sqrt{\frac{c_1-\lambda_1 c_2}{1-\lambda_1}},-\sqrt{\frac{c_1-\lambda_2 c_2}{1-\lambda_2}} \right\}\\ \left\{A_1,B_1,A_2,B_2\right\}&:=& \left\{ \frac{1-\lambda_1}{\lambda_2-\lambda_1}, -\frac{1-\lambda_2}{\lambda_2-\lambda_1}, \lambda_2\frac{1-\lambda_1}{\lambda_2-\lambda_1}, -\lambda_1\frac{1-\lambda_2}{\lambda_2-\lambda_1} \right\} \end{eqnarray} Define: \begin{eqnarray} u[x]&:=&(\frac{x-\alpha}{x-\beta})^2+\frac{1}{2}(\frac{B_2}{A_2}+\frac{B_1}{A_1})\\ \kappa(x)&:=&\imath \cdot \mbox{arcsinh}(\sqrt{\frac{A_1}{B_1}} \frac{x-\alpha}{x-\beta})\\ I_1(u,\beta,B)&:=&\int \frac{1}{u-\beta}\cdot \frac{1}{\sqrt{B_1+u^2}} du = -\frac{2}{\sqrt{\beta^2+B}}\cdot \mbox{arctanh}\left(\frac{\sqrt{B}}{\sqrt{\beta^2+B}}\cdot \frac{u+\beta(-1+\sqrt{1+u^2/B})}{u}\right) \\ I_2(u,\beta,B)&:=& \frac{d}{d \beta} I_1(u,\beta,B)\\ {\mathfrak I}(x)&:=&\alpha\frac{\alpha-\beta}{\beta^2}\cdot \left.I_2\left(u,(\frac{\alpha}{\beta})^2+\frac{1}{2}(\frac{B_2}{A_2}+\frac{B_1}{A_1}),-\frac{1}{4} (\frac{B_2}{A_2}-\frac{B_1}{A_1})^2\right)\right|_{u[x]}^{u[1]}+\\ && \left.I_1\left(u,(\frac{\alpha}{\beta})^2+\frac{1}{2}(\frac{B_2}{A_2}+\frac{B_1}{A_1}),-\frac{1}{4} (\frac{B_2}{A_2}-\frac{B_1}{A_1})^2\right)\right|_{u[x]}^{u[1]} \end{eqnarray} Now, the result reads: \begin{eqnarray} &&\sqrt{z} {\mathcal S}^{(4)}_2(z)=\frac{2}{\sqrt{z \cdot A_1 \cdot B_2} \cdot \beta^2}\left(\right.\\ &&\left. \frac{\sqrt{B_2}}{\sqrt{A_2} \beta}\cdot {\mathfrak I}(x)+\right.\\ &&\left. \frac{\imath}{\alpha-\beta}\cdot\left(F(\kappa(x),\frac{A_2 B_1}{A_1 B_2})-F(\kappa(1),\frac{A_2 B_1}{A_1 B_2})\right)+\right.\\ &&\left. \imath\frac{3\alpha-\beta}{\alpha^2}\cdot\left(\Pi(-\frac{B_1\beta^2}{A_1\alpha^2};\kappa(x),\frac{A_2 B_1}{A_1 B_2})+\Pi(-\frac{B_1\beta^2}{A_1\alpha^2};\kappa(1),\frac{A_2 B_1}{A_1 B_2})\right)+\right.\\ &&\left. 2\frac{\alpha^2(-\alpha+\beta)}{\beta^4}\cdot \mbox{Im} \frac{d}{d \theta} \left.\left( \Pi(-\frac{B_1}{A_1\theta};\kappa(x),\frac{A_2 B_1}{A_1 B_2})+\Pi(-\frac{B_1}{A_1\theta};\kappa(1),\frac{A_2 B_1}{A_1 B_2})\right)\right|_{\theta=\alpha^2/\beta^2} \right) && \end{eqnarray}

Przemo
  • 11,331