Find the Taylor seriespolynomial form of:
$$x^x$$
My attempt:
I started calculating derivatives of $x^x$ for the series, $$f(x)=x^x$$ $$f'(x)=x^x(\ln x+1)$$ $$f''(x)=x^{x-1}+x^x(\ln x+1)$$ $$f'''(x)=\cdots$$ $$\vdots$$ But i could get only till certain terms and got frustrated,
Attempt no. 2:
$$f(x)=x^x$$ $$f(x)=e^{x\ln x}$$ $$f(x)=1+x\ln x+\frac{x^2\ln^2 x}{2!}+\cdots$$ $$f(x)=1+x({x-1}-\frac{(x-1)^2}{2}+\frac{(x-1)^3}{3}+\cdots)+\frac{x^2}{2}({x-1}-\frac{(x-1)^2}{2}+\frac{(x-2)^3}{3}+\cdots)^2+\cdots$$ Now let's try to get $x^n$'s coefficient, $$C(x^0)=1$$ In the bracket multiplied to x, $$1+x(x-1-x^2+2x-1+x^3-3x+3x-1+\cdots)+\cdots$$ Following the lead $$1+x(g(x)-1-1-1-1\cdots)+\cdots$$ $$C(x^1)=-1-1-1-\cdots$$ So, $$C(x^1)=-\infty\cdots?$$ How do we write this equation?
Attempt 3:
$$f(x)=1+(x+1)\ln (x+1)+\frac{(x+1)^2}{2!}\ln^2(x+1)+\cdots$$ Now, $$f(x)=1+(x+1)(x+\frac{x^2}{2}+\frac{x^3}{3}\cdots)+\cdots$$ Now, $$C(x^0)=1$$ Considering $(1+x)^2,(1+x)^3\cdots$ contribution to$C(x^1)$ $$C(x^1)=1+1+1+1+\cdots$$ $$C(x^1)=\infty\cdots ?$$ Still.....stuck