Calculate $$\lim\limits_{x \to 0^+} \dfrac{\sqrt{\sin x}-\sin \sqrt{x}}{x\sqrt{x}}$$ without use Taylor serie and L'Hôpital.
$$\lim\limits_{x \to 0^+} \dfrac{\sqrt{\sin x}-\sin \sqrt{x}}{x\sqrt{x}}\cdot\dfrac{\sqrt{\sin x}+\sin \sqrt{x}}{\sqrt{\sin x}+\sin \sqrt{x}}=\lim\limits_{x \to 0^+} \dfrac{\sin x-\sin^2\sqrt{x}}{x\sqrt{x}(\sqrt{\sin x}+\sin \sqrt{x})}$$
now what ?
din\dfrac. The first so that the title may be right-clicked property in the front page, and the second to make it conform to the rest of the front page. – Arthur Sep 19 '17 at 09:04