For a given $M \colon \mathbb{R}^{n} \to \mathbb{R}^{n}$ such that $M$ is positive semidefinite, linear and self-adjoint operator, the seminorm $\left\lVert \cdot \right\rVert _{M}$ endowed by M is defined as: $$ \left\lVert x \right\rVert _{M} ^{2} = \left\langle Mx , x \right\rangle \geq 0 , \forall x \in \mathbb{R}^{n} . $$
My question is:
if we know that $$ \left\lVert a \right\rVert \leq \left\lVert b \right\rVert + \left\lVert c \right\rVert $$ which gives us (by squaring both sides then apply) something like $$ \left\lVert a \right\rVert ^{2} \leq 2 \left\lVert b \right\rVert ^{2} + 2 \left\lVert c \right\rVert ^{2} $$ then can we conclude that $$ \left\lVert a \right\rVert _{M}^{2} \leq 2 \left\lVert b \right\rVert _{M}^{2} + 2 \left\lVert c \right\rVert _{M}^{2} $$ here $\left\lVert \cdot \right\rVert$ stands for the usual Euclidean norm.
if there exists some $\mu > 0$ such that $$ \left\lVert M \right\rVert _{n,n} = \sup\limits_{\left\lVert x \right\rVert \neq 0} \dfrac{\left\lVert Mx \right\rVert}{\left\lVert x \right\rVert} \leq \mu < + \infty $$ then can we conclude that $$ \left\lVert x \right\rVert _{M} ^{2} \leq \mu \left\lVert x \right\rVert ^{2} , \forall x \in \mathbb{R}^{n} . $$ I tried to take the square in the definition of the operator norm but it only leads to nowhere as I only have $$ \left\lVert Mx \right\rVert ^{2} \leq \mu^{2} \left\lVert x \right\rVert ^{2} , \forall x \in \mathbb{R}^{n} . $$