I wanted to get an other form for $\zeta (3)$, where $\zeta$ denotes the Riemann Zeta function: $$\sum_{n=1}^{\infty}\frac{1}{n^3}\space =\space \sum_{n=1}^{\infty}\frac{1}{(2n-1)^3}\space + \sum_{n=1}^{\infty}\frac{1}{(2n)^3},$$ or, $$\sum_{n=1}^{\infty}\frac{1}{n^3}\space - \frac{1}{8}\sum_{n=1}^{\infty}\frac{1}{n^3} \space = \sum_{n=1}^{\infty}\frac{1}{(2n-1)^3}$$ $$\frac{7}{8}\sum_{n=1}^{\infty}\frac{1}{n^3}\space = \sum_{n=1}^{\infty}\frac{1}{(2n-1)^3} \tag{1}$$ $$\frac{7}{8}\sum_{n=1}^{\infty}\frac{1}{n^3}\space = \sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^3}\space + \space 2\sum_{n=1}^{\infty}\frac{1}{(4n-3)^3} \tag{2}$$ What i'm trying to do is to express it using only alternate sums.
$$\frac{7}{8}\sum_{n=1}^{\infty}\frac{1}{n^3}\space = \sum_{n=1}^{\infty}\frac{(-1)^{n}}{(2n-1)^3}\space + \space 2\sum_{n=1}^{\infty}\frac{(-1)^n}{(4n-3)^3}\space +\space 4\sum_{n=1}^{\infty}\frac{(-1)^n}{(8n-7)^3}\space + \space ... \space +\space 2^k\sum_{n=1}^{\infty}\frac{(-1)^n}{(2^{k+1}n-(2^{k+1}-1))^3}$$ Which is a double sum : $$\frac{7}{8}\sum_{n=1}^{\infty}\frac{1}{n^3}\space = \space \sum_{k=0}^{\infty}2^k\sum_{n=1}^{\infty}\frac{(-1)^n}{(2^{k+1}n-(2^{k+1}-1))^3}$$ I was hoping to get somthing simpler than the first sum, even though i know that alternate sums are easyer to compute, that is why i wanted to express it using them, but is this right ? did i make any mistake in any step ? thanks in advance !