Im trying to prove that, given $a,b$ with at least one of $a,b \neq 0$, $$ \gcd\left(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}\right)=1 $$ I have tried to prove the identity $$ \gcd(c\cdot a, c\cdot b) = c\cdot \gcd(a,b) $$ with $c = \dfrac{1}{\gcd(a,b)}$
However I'm having trouble understanding the proof.
Thank you for your time.