Combinatorial Approach
The Stars and Bars Formula says that there are $\binom{k-1+i}{k-1}$ ways to put $i$ stars into $k$ bins. Thus, there are
$$
\sum_{i=0}^n\binom{k-1+i}{k-1}
$$
$$
\underbrace{\star\star\star\,\mid\,\star\,\mid\,\star\star}_\text{$i$ stars and $k-1$ bars}\qquad\underbrace{\star\star\star\star\star}_\text{$n-i$ stars}
$$
ways to put up to $n$ stars into $k$ bins. We can also count this same number by adding a bin to hold the excess $n-i$ stars and get that the number of ways to put the $n$ stars into the $k+1$ bins to be
$$
\binom{n+k}{k}
$$
$$
\underbrace{\star\star\star\,\mid\,\star\,\mid\,\star\star\,\mid\,\star\star\star\star\star}_\text{$n$ stars and $k$ bars}
$$
Algebraic Approach
$$
\begin{align}
\sum_{i=0}^n\binom{k-1+i}{k-1}
&=\sum_{i=0}^n\binom{k-1+i}{i}\binom{n-i}{n-i}\tag{1}\\
&=(-1)^n\sum_{i=0}^n\binom{-k}{i}\binom{-1}{n-i}\tag{2}\\
&=(-1)^n\binom{-k-1}{n}\tag{3}\\
&=\binom{k+n}{n}\tag{4}\\
&=\binom{k+n}{k}\tag{5}
\end{align}
$$
Explanation:
$(1)$: $\binom{n}{k}=\binom{n}{n-k}$ and $\binom{k}{k}=[k\ge0]$
$(2)$: convert to negative binomial coefficients
$(3)$: Vandermonde's Identity
$(4)$: convert from negative binomial coefficients
$(5)$: $\binom{n}{k}=\binom{n}{n-k}$