I read about the integral $$\int \arctan^2 x dx$$ in this old post: Evaluation of $\int (\arctan x)^2 dx$
By replacing $$\arctan x = -\frac{i}{2}\left[\log(1+ix) - \log(i-ix)\right],$$ as suggested there, I ended up with this solution $$\int\arctan^2 x dx = x\arctan^2x - \frac{1}{2}\log(1+x^2)\arctan x -\log 2 \arctan x + \mbox{Im}\left\{\mbox{Li}_2\left(\frac{1+ix}{2}\right)\right\} + K, \tag{1}\label{uno}$$ where, as usual, $\mbox{Li}_2(z)$ is the dilogarithm function $$\mbox{Li}_2(z) = -\int_0^z \frac{\log(1-u)}{u}du=\sum_{k=1}^{+\infty}\frac{z^k}{k^2}.$$ Is this a correct development?
In that case, if I determine, using \eqref{uno}, the definite integral $\int_0^1 \arctan^2xdx$ I get the result $$\int_0^1 \arctan^2xdx=\frac{\pi^2}{16}-\frac{3\pi}{8}\log 2 + \mbox{Im}\left\{\mbox{Li}_2\left(\frac{1+i}{2}\right)\right\}.$$ If I now compare this result with the one given in Definite Integral of $\arctan(x)^2$, i.e. $$\int_0^1 \arctan^2xdx=\frac{\pi^2}{16}+\frac{\pi}{4}\log 2 - C,$$ where $C$ is the Catalan constant $$C = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)^2},$$ I get the following expression: $$\mbox{Im}\left\{\mbox{Li}_2\left(\frac{1+i}{2}\right)\right\} = \frac{5\pi}{8}\log 2 - C.$$ Is that reasonable?