2

Prove that for any natural number $n$, one can find $z,x,y\in\mathbb{N}$ such that: $z^n=x^2+y^2.$

Here $\mathbb{N}$ denotes all the natural numbers $n\geq1$.

This problem feels like so much general that i don't even know how to start. I don't think that any of the things that i tought is worthy of posting here.

So i'm asking for hints. Can someone give some good ideas on how to start?

user2345678
  • 2,885

5 Answers5

8

For $n$ even take $3\times 5^{\frac{n-2}{2}},4\times 5^{\frac{n-2}{2}},(5\times 5^{n-1})^\frac{1}{n}=5$

For $n$ odd find $k$ such that $n|2k+1$. Then take $2^k,2^k,2^{\frac{2k+1}{n}}$.

user84413
  • 27,211
Wen
  • 1,966
  • 9
  • 18
4

Begin with $$5=2^2+1^2$$

If $m=a^2+b^2$ with positive integers $a,b$, then $5m=5a^2+5b^2=(2b+a)^2+(2a-b)^2$

WLOG , we have $a\ge b$, so $2a-b$ is positive, so we have a representation again.

So, with induction, we can easily show that for every $5^n$, there is a solution.

Peter
  • 84,454
4

Idea: use complex numbers.

Write $$(a+i b)^ n = x + iy$$

Then we get for the norms $$(a^2 + b^2)^n = x^2 + y^2$$

Example: for $n=3$ $$(a+ib)^3 = a^3 - 3 a b^2 + i ( 3 a^2b -b^3)= x+ i y$$ gives the identity $$(a^2 + b^2)^3 = (a^3 - 3 a b^2)^2 + (3 a^2 b - b^3)^2$$

You can do this for every $n$.

orangeskid
  • 53,909
2

S is the set of numbers in form $x^2+y^2$ where $x,y\in\mathbb N$. Then

1) If $a,b\in S$ then $ab\in S$. Indeed, $a=x^2+y^2$ and $b=z^2+t^2$ then $ab=(xz+yt)^2+(xt-yz)^2$.

2) $2=1^2+1^2$, $5=1^2+2^2$, ... then $2^n,5^n, ...\in S$.

These answers your question.

Jie Fan
  • 1,886
  • I think the case that $a,b\in S$ implies $ab\in S$ must be investigated further. Because $x,y,z \in \mathbb{N}$, care must be taken that $xt-yz \ne 0$ as $0 \notin \mathbb{N}$ and hence $ab\notin S$. As a counter-example, $x^2 + y^2 = 2^2$ has no solutions in $\mathbb{N}$, but according to your solution, $2^n \in S \ \forall n \in \mathbb{N}$ – thornsword May 30 '20 at 04:14
  • As an alternate solution, $(x,y,z) = (3.5^{n-1}, 4.5^{n-1}, 5^2)$ works for all $n \in \mathbb{N}$ – thornsword May 30 '20 at 04:16
1

$44^2 + 9^2 = 2017.$ At each stage, with $a^2 + b^2 = 2017^n,$ take $$ (a,b) \mapsto (44a - 9 b, \; \; 9a + 44b) $$ to get $2017^{n+1}.$ This will never give either zero because $\arctan \frac{44}{9}$ is not a rational multiple of $\pi.$ All we are doing is complex numbers, $$ (44 + 9i)(a+bi) = (44a - 9b) + (9a+44b)i \; . $$

Sometimes one or both entires is negative, just take absolute value for that one to get your statement for natural numbers.

44   9  2017 =  2017
1855   792  4068289 =  2017^2
74492   51543  8205738913 =  2017^3
2813761   2938320  16550975387521 =  2017^4
97360604   154609929  33383317356629857 =  2017^5
2892377215   7679082312  67334151108322421569 =  2017^6
58152856652   363911016663  135812982785486324304673 =  2017^7
-716473457279   16535460443040  273934786278325916122525441 =  2017^8
-180343976107636   721111998378249  552526463923383372819133814497 =  2017^9
-14425142934140225   30105832143674232  1114445877733464262976192903840449 =  2017^10
-905658778395237988   1194830327914404183  2247837335388397418422981087046185633 =  2017^11
-50602459200620109119   44421605422676642160  4533887905478397592959152852572156421761 =  2017^12
-2626302653631374580676   1499128505792191272969  9144851905349927944998611303638039502691937 =  2017^13
Will Jagy
  • 139,541