$44^2 + 9^2 = 2017.$ At each stage, with $a^2 + b^2 = 2017^n,$ take
$$ (a,b) \mapsto (44a - 9 b, \; \; 9a + 44b) $$
to get $2017^{n+1}.$ This will never give either zero because $\arctan \frac{44}{9}$ is not a rational multiple of $\pi.$ All we are doing is complex numbers,
$$ (44 + 9i)(a+bi) = (44a - 9b) + (9a+44b)i \; . $$
Sometimes one or both entires is negative, just take absolute value for that one to get your statement for natural numbers.
44 9 2017 = 2017
1855 792 4068289 = 2017^2
74492 51543 8205738913 = 2017^3
2813761 2938320 16550975387521 = 2017^4
97360604 154609929 33383317356629857 = 2017^5
2892377215 7679082312 67334151108322421569 = 2017^6
58152856652 363911016663 135812982785486324304673 = 2017^7
-716473457279 16535460443040 273934786278325916122525441 = 2017^8
-180343976107636 721111998378249 552526463923383372819133814497 = 2017^9
-14425142934140225 30105832143674232 1114445877733464262976192903840449 = 2017^10
-905658778395237988 1194830327914404183 2247837335388397418422981087046185633 = 2017^11
-50602459200620109119 44421605422676642160 4533887905478397592959152852572156421761 = 2017^12
-2626302653631374580676 1499128505792191272969 9144851905349927944998611303638039502691937 = 2017^13