Just to show another way to solve it.
The backward Delta (finite difference) is defined as
$$
\eqalign{
& \nabla _{\,x} \,f(x) = f(x) - f(x - 1) \cr
& \nabla _{\,x} ^n \,f(x) = \nabla _{\,x} \,\left( {\nabla _{\,x} ^{n - 1} \,f(x)} \right) = \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,n} \right)} {\left( { - 1} \right)^k \left( \matrix{
n \cr
k \cr} \right)\;f(x - k)} \cr}
$$
So
$$
\sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,n} \right)} {\left( { - 1} \right)^k \left( \matrix{
n \cr
k \cr} \right)\;\left( \matrix{
x - k \cr
l \cr} \right)} = \nabla _{\,x} ^n \,\left( \matrix{
x \cr
l \cr} \right) = \nabla _{\,x} ^n \,{{x^{\,\underline {\,l\,} } } \over {l!}} = {1 \over {l!}}\nabla _{\,x} ^n \,x^{\,\underline {\,l\,} }
$$
where $x^{\,\underline {\,l\,}} $ is the Falling Factorial
It is easy to demonstrate that
$$
\eqalign{
& \nabla _{\,x} \;x^{\,\underline {\,l\,} } = x^{\,\underline {\,l\,} } - \left( {x - 1} \right)^{\,\underline {\,l\,} } = l\left( {x - 1} \right)^{\,\underline {\,l - 1\,} } \cr
& \nabla _{\,x} ^n \,x^{\,\underline {\,l\,} } = l^{\,\underline {\,n\,} } \left( {x - n} \right)^{\,\underline {\,l - n\,} } \cr}
$$
and therefore
$$
\eqalign{
& \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,n} \right)} {\left( { - 1} \right)^k \left( \matrix{
n \cr
k \cr} \right)\;\left( \matrix{
x - k \cr
l \cr} \right)} = \nabla _{\,x} ^n \,\left( \matrix{
x \cr
l \cr} \right) = {1 \over {l!}}\nabla _{\,x} ^n \,x^{\,\underline {\,l\,} } = \cr
& = {1 \over {l!}}l^{\,\underline {\,n\,} } \left( {x - n} \right)^{\,\underline {\,l - n\,} } = {1 \over {\left( {l - n} \right)!}}\left( {x - n} \right)^{\,\underline {\,l - n\,} } = \left( \matrix{
x - n \cr
l - n \cr} \right) \cr}
$$
which is valid for $x$ integer, but also real or even complex.
By the way, it might be interesting to note that the Binomial Inversion also assures you that the reverse
of the above is true, i.e.
$$
\sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,n} \right)} {\left( { - 1} \right)^k \left( \matrix{
n \cr
k \cr} \right)\;\left( \matrix{
x - k \cr
l \cr} \right)} = \left( \matrix{
x - n \cr
l - n \cr} \right)\quad \Leftrightarrow \quad \sum\limits_{\left( {0\, \le } \right)\,k\,\left( { \le \,n} \right)} {\left( { - 1} \right)^k \left( \matrix{
n \cr
k \cr} \right)\;\left( \matrix{
x - k \cr
l - k \cr} \right)} = \left( \matrix{
x - n \cr
l \cr} \right)
$$