$$ \frac{dx}{dt}=\left(\begin{matrix}1 & 9 & 9 \\0 & 19 & 18 \\ 0 & 9 & 10 \end{matrix} \right)\left(\begin{matrix}x_1\\x_2\\x_3 \end{matrix}\right)$$
My try:
We assume it has the solution of the form $x=\alpha e^{\lambda t}$
Setting the Determinant of the system to zeroes.
I have found three eigenvalues,
$$\lambda_1=1,\lambda_2=10, \lambda_3=19 $$
For $\lambda_1=1$
$$\left(\begin{matrix}\alpha_1 + 9\alpha_2 + 9\alpha_3 \\ 19\alpha_2 +18\alpha_3 \\ 9\alpha_2 + 10\alpha_3 \end{matrix} \right)=\left(\begin{matrix}\alpha_1\\ \alpha_2\\ \alpha_3 \end{matrix}\right)$$
Solving it we have,
$\alpha_1$ is independent and $\alpha_2=-\alpha_3$
For $\lambda_2=10$
$$\left(\begin{matrix}\alpha_1 + 9\alpha_2 + 9\alpha_3 \\ 19\alpha_2 +18\alpha_3 \\ 9\alpha_2 + 10\alpha_3 \end{matrix} \right)=\left(\begin{matrix}10\alpha_1\\ 10\alpha_2\\ 10\alpha_3 \end{matrix}\right)$$
$\alpha_1=\alpha_2+\alpha_3$ and $\alpha_2=-2\alpha_3$ and $\alpha_2=0$
For $\lambda_3=19$
I run into similar problems
I know that it is wrong, can someone help me in this matter?