The Fibonacci sequence is generated by the formulas \begin{cases} r_0=1 & r_1=1\\ r_{n+1}=r_n+r_{n-1} \end{cases} The sequence therefore starts out $1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$. Prove that the sequence $[2r_n/r_{n-1}]$ converges to $1+\sqrt{5}$. Is the convergence linear, superlinear, quadratic?
Proof: Suppose we are given the following recurrence relation $$r_{n+1}=r_n+r_{n-1},$$ where $r_0=1$ and $r_1=1$. We want to show that the sequence $[2r_n/r_{n-1}]$ converges to $1+\sqrt{5}$. i.e. We want to show that $$\lim_{n\to \infty} \dfrac{2r_n}{r_{n-1}}=1+\sqrt{5}.$$ Before, we prove this limit is true, we need to find the solution to this recurrence relation with the given initial conditions.
The corresponding characteristic polynomial to the recurrence relation is $$p(\lambda)=\lambda^2-\lambda-1=0.$$ Hence the roots of the characteristic polynomial are $\lambda=\dfrac{1\pm\sqrt{5}}{2}$. Hence the general solution for the relation is $$r_n=A\left(\dfrac{1+\sqrt{5}}{2}\right)^n+B\left(\dfrac{1-\sqrt{5}}{2}\right)^n.$$
Next, we want to find the values of $A$ and $B$ with the given initial conditions. With the starting values $r_0=1$ and $r_1=1$, we get the following system of equations: \begin{cases} 1=r_0=A+B \\ 1=r_1=A\left(\dfrac{1+\sqrt{5}}{2}\right)+B\left(\dfrac{1-\sqrt{5}}{2}\right) \end{cases}
Multiply the first equation by $\dfrac{1+\sqrt{5}}{2}$. \begin{cases} \dfrac{1+\sqrt{5}}{2}=r_0=A\left(\dfrac{1+\sqrt{5}}{2}\right)+B\left(\dfrac{1+\sqrt{5}}{2}\right) \\ 1=r_1=A\left(\dfrac{1+\sqrt{5}}{2}\right)+B\left(\dfrac{1-\sqrt{5}}{2}\right) \end{cases}
Next, subtract equation (1) from equation (2), which results with $$\dfrac{\sqrt{5}=1}{2}=B\sqrt{5} \iff B=\dfrac{\sqrt{5}-1}{2\sqrt{5}}.$$ Furthermore $$A=1-\dfrac{\sqrt{5}-1}{2\sqrt{5}}=1-\dfrac{\sqrt{5}}{2\sqrt{5}}+\dfrac{1}{2\sqrt{5}}=1-\dfrac{1}{2}+\dfrac{1}{2\sqrt{5}}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{5}}=\dfrac{\sqrt{5}+1}{2\sqrt{5}}.$$ Hence, the general solution for the relation is \begin{equation*} \begin{aligned} r_n & =\left(\dfrac{\sqrt{5}+1}{2\sqrt{5}}\right)\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\left(\dfrac{\sqrt{5}-1}{2\sqrt{5}}\right)\left(\dfrac{1-\sqrt{5}}{2}\right)^n \\ & =\dfrac{1}{\sqrt{5}}\left[\dfrac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1}}\right]. \end{aligned} \end{equation*}
Now we can show that the sequence $[2r_n/r_{n-1}]$ converges to $1+\sqrt{5}$. \begin{equation*} \begin{aligned} \lim_{n\to \infty} \dfrac{2r_n}{r_{n-1}} & = \lim_{n\to \infty} \dfrac{\dfrac{2}{\sqrt{5}}\left[\dfrac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{2^{n+1}}\right]}{\dfrac{1}{\sqrt{5}}\left[\dfrac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n}}\right]} \\ & = \lim_{n\to \infty} \dfrac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}} \\ & = \lim_{n\to \infty} \dfrac{\dfrac{(1+\sqrt{5})^{n+1}-(1-\sqrt{5})^{n+1}}{(1+\sqrt{5})^n}}{\dfrac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{(1+\sqrt{5})^n}} \\ & = \lim_{n\to \infty} \dfrac{(1+\sqrt{5})-(1-\sqrt{5})\cdot \left(\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\right)^{n}}{1-\left(\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\right)^{n}} \\ & = \dfrac{(1+\sqrt{5})-(1-\sqrt{5})\cdot 0}{1-0} \\ & = 1+\sqrt{5}. \end{aligned} \end{equation*}
Note: Since $0<\dfrac{1-\sqrt{5}}{1+\sqrt{5}}<1$, then $$\lim_{n\to\infty} \left(\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\right)^{n}=0.$$
To finish the question I need to state whether the convergence is linear, superlinear, or quadratic. I know that
- If the limit equals 0, then the convergence is superlinear.
- If the limit equals 1, then the convergence is linear.
- If the limit equals 2, then the convergence is quadratic.
However, my limit is equal to $1+\sqrt{5}$. Am I missing something?