I want to verify the following limit using the definition of a limit:
$$\lim_{x \to 1} \sqrt{x} = 1$$
I know that:
$$0<∣x-1∣<\delta \qquad\text{and}\qquad ∣\sqrt{x}-1∣<\varepsilon,$$
but then I do not have a clue on how to move on.
I want to verify the following limit using the definition of a limit:
$$\lim_{x \to 1} \sqrt{x} = 1$$
I know that:
$$0<∣x-1∣<\delta \qquad\text{and}\qquad ∣\sqrt{x}-1∣<\varepsilon,$$
but then I do not have a clue on how to move on.
Since $x-1=\sqrt x^2-1^2=\bigl(\sqrt x+1\bigr)\bigl(\sqrt x-1\bigr)$, and since $\sqrt x+1>1$ when $x>0$, if you take any $\varepsilon>0$ and if you choose $\delta>0$ such that $\delta\leqslant\varepsilon$ and that $\delta\leqslant1$, then$$|x-1|<\delta\iff\bigl(\sqrt x+1\bigr)\bigl\lvert\sqrt x-1\bigr\rvert<\delta\implies\bigl\lvert\sqrt x-1\bigr\rvert<\delta\leqslant\varepsilon.$$
$∣\sqrt{x}-1∣<\varepsilon$ means $\sqrt{x}-1<\varepsilon\land \sqrt{x}-1>-\varepsilon$
That is, for $0<\varepsilon\leq 1$
$\sqrt x < \varepsilon+1$ or $x < \varepsilon^2+2\varepsilon+1$ and
$\sqrt x > 1 -\varepsilon$ or $0<\varepsilon\leq 1 \land x>1-2\varepsilon+\varepsilon^2$
Thus we have $1-2\varepsilon+\varepsilon^2<x < \varepsilon^2+2\varepsilon+1$
which can be written as
$\varepsilon^2-2\varepsilon<x-1 < \varepsilon^2+2\varepsilon$
so taking $\delta=|\varepsilon^2-2\varepsilon|$
we are sure that if $|x-1|<\delta$ then $|\sqrt x -1| < \varepsilon$
For instance if $\varepsilon=0.001$ taking $\delta=|10^{-6}- 2 \times 10^{-3}|\approx 0.002$
if $|x-1|<0.002$ let's say $x=0.999$ then $|\sqrt x-1|\approx 0.0005<\varepsilon$