Possible Duplicate:
How to prove that $\mathbb{Q}[\sqrt{p_1}, \sqrt{p_2}, \ldots \sqrt{p_n} ] = \mathbb{Q}[\sqrt{p_1}+ \sqrt{p_2}+\cdots + \sqrt{p_n}]$, for $p_i$ prime?
Let ${p_n}$ be $n$-th prime number in $\mathbb{N}$ and ${\mathbb{Q}_n} = \mathbb{Q}\left[ {\left\{ {\sqrt {{p_i}} :i \in \left\{ {1, \ldots ,n} \right\}} \right\}} \right]$ be the least field which contains $\sqrt {{p_1}} , \ldots ,\sqrt {{p_n}} $. Is it true that ${\mathbb{Q}_n} = \mathbb{Q}\left[ {\sum\limits_{i = 1}^n {\sqrt {{p_i}} } } \right],\forall n \in \mathbb{N}$ ?
My attempt: For $n = 1$ it's obvious, for $n = 2$ obviously $\mathbb{Q}\left[ {\sqrt 2 + \sqrt 3 } \right] \subseteq \mathbb{Q}\left[ {\sqrt 2 ,\sqrt 3 } \right]$. Also, $$ - \frac{9}{2}\left( {\sqrt 2 + \sqrt 3 } \right) + \frac{1}{2}{\left( {\sqrt 2 + \sqrt 3 } \right)^3} = \sqrt 2 \in \mathbb{Q}\left[ {\sqrt 2 + \sqrt 3 } \right] \Rightarrow \left( {\sqrt 2 + \sqrt 3 } \right) - \sqrt 2 =$$
$$ \sqrt 3 \in \mathbb{Q}\left[ {\sqrt 2 + \sqrt 3 } \right] \Rightarrow \mathbb{Q}\left[ {\sqrt 2 ,\sqrt 3 } \right] \subseteq \mathbb{Q}\left[ {\sqrt 2 + \sqrt 3 } \right] \Rightarrow \mathbb{Q}\left[ {\sqrt 2 ,\sqrt 3 } \right] = \mathbb{Q}\left[ {\sqrt 2 + \sqrt 3 } \right]$$.
Now, assume that $\mathbb{Q}\left[ {\sum\limits_{i = 1}^k {\sqrt {{p_i}} } } \right] = {\mathbb{Q}_k}$ for all $1 \leqslant k \leqslant n - 1$. Obviously, $\mathbb{Q}\left[ {\sum\limits_{i = 1}^n {\sqrt {{p_i}} } } \right] \subseteq {\mathbb{Q}_n}$. We want to show that $\mathbb{Q}\left[ {\sum\limits_{i = 1}^n {\sqrt {{p_i}} } } \right] \supseteq {\mathbb{Q}_n} = {\mathbb{Q}_{n - 1}}\left[ {\sqrt {{p_n}} } \right] = \left( {\mathbb{Q}\left[ {\sum\limits_{i = 1}^{n - 1} {\sqrt {{p_i}} } } \right]} \right)\left[ {\sqrt {{p_n}} } \right]$.
And now I'm stuck. Also, I might be wrong here, they might not be equal. Any ideas?