3

My question is: whether the following is true or not, and how to prove in either case:

$$\text{If}\quad\sum_{n=1}^\infty a_n\quad\text{and}\quad\sum_{n=1}^\infty na_n\quad\text{both converge, then}\quad \lim_{n\to\infty}n^2a_n=0$$

There's no additional condition like $a_n$'s are positive, etc. (i.e. $a_n$ could be either positive or negative.)

(*) As a background, this question came to when I was solving this problem: $$\text{If}\quad\sum_{n=1}^\infty a_n=1\quad\text{and}\quad\sum_{n=1}^\infty na_n=2\text{, then}\quad \lim_{n\to\infty}n^2(a_n-a_{n+1})=?$$ that leads to estimate $\sum_{n=1}^\infty (n^2a_n-(n+1)^2a_{n+1})$ and hence $\lim_{n\to\infty}n^2a_n$.

Kay K.
  • 9,931

3 Answers3

5

Consider the sequence $(a_n)_n$ defined by $$a_n = \frac{(-1)^n}{n^2}$$ for $n\geq 1$.

Clement C.
  • 67,323
4

For an example where $\sum_{n=1}^\infty a_n$ and $\sum_{n=1}^\infty na_n$ converge absolutely define the sequence $a_n$ as:

$$a_n = \begin{cases} \frac{1}{n^2}, & \text{if $n$ is a perfect square} \\ 0, & \text{otherwise} \end{cases}$$

We have:

$$\sum_{n=1}^\infty a_n = \sum_{k=1}^\infty \frac{1}{k^4} < +\infty$$ $$\sum_{n=1}^\infty n \cdot a_n = \sum_{k=1}^\infty k^2\cdot\frac{1}{k^4} = \sum_{k=1}^\infty \frac{1}{k^2} < +\infty$$

However,

$$n^2a_n = \begin{cases} 1, & \text{if $n$ is a perfect square} \\ 0, & \text{otherwise} \end{cases}$$

so it does not converge.

mechanodroid
  • 46,490
1

Take $$a_n=\frac {\sin (n)}{n^2} $$

$$\sum a_n $$ and $$\sum na_n $$ are convergent by Dirichlet's test , but $$\lim n^2a_n \ne 0$$