I'm learning calculus, and I was given this information:
$$\lim_{x \to a} (f(x))^n = (\lim_{x \to a} f(x))^n$$ $$\lim_{x \to a}(f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$ $$\lim_{x \to \infty}\frac{1}{x}=0$$ And I have to find this limit: $$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$ Why can't I just use my first rule to get: $$\left(\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)\right)^x$$ then... $$\left(\lim_{x \to \infty} 1+\lim_{x \to \infty} \frac{1}{x}\right)^x$$ finally... $$(1 + 0)^x=1^x=1$$ I know the limit is actually equal to $e$ which is around $2.71828$, so why am I able to manipulate the limit to make it 1?