I thought about asking this type of question after I've seen a question in this site which was the following; $$(x+y)(y+z)(x+z)=13xyz$$ We have shown that this equation has infinitely many solutions with trivial solutions that made us plot $x,y,z=0$ and so forth...
However now I wonder if I can have an approach like this;
$$(x+y)(y+z)(x+z)=txyz$$ $x,y,z,t \in \mathbb{Z} \quad t$ is a constant, no constraints about being positive or negative I can comfortably say that if $x=0$ and $y=0$ there are infinitely many $z$'s If $y,z=0$ there are infinitely many $x$'s so, does that prove $$(x+y)(x+z)(y+z)=txyz$$ for $$x,y,z,t \in \mathbb{Z}$$ has infinitely many solutions?