You can use the Stolz–Cesàro theorem:
\begin{align}\lim_{n\to\infty} \frac{x_1+x_2+\cdots+x_n}{n} &= \lim_{n\to\infty} \frac{(x_1+x_2+\cdots+x_n + x_{n+1}) - (x_1+x_2+\cdots+x_n)}{(n+1) - n} \\
&= \lim_{n\to\infty} \frac{x_{n+1}}{1} \\
&= \lim_{n\to\infty} x_{n+1} \\
&= L
\end{align}
As pointed out in the comments, using the Stolz–Cesàro theorem is an overkill in this situation, so here is an elementary proof:
The sequence $(x_n)_{n=1}^\infty$ is convergent, so it is bounded: there exists $M > 0$ such that $|x_n|\leq M$, $\forall n \in \mathbb{N}$.
Let $\varepsilon > 0$. By the definition of limit there exists $n_1\in\mathbb{N}$ such that $n \geq n_1 \implies |x_n - L|<\frac{\varepsilon}{2}$.
Let $n_2 \in \mathbb{N}$ be large enough so that $\frac{n_1(M+|L|)}{n} < \frac{\varepsilon}{2}$.
Take $n \geq max\{n_1,n_2\}$:
\begin{align}
\left|\frac{1}{n}\sum_{i=1}^n x_i - L\right| &= \left|\frac{1}{n}\sum_{i=1}^{n_1} (x_i - L) + \frac{1}{n}\sum_{n_1+1=1}^n (x_i - L)\right| \\
&\leq \frac{1}{n}\sum_{i=1}^{n_1} (\underbrace{|x_i|}_{\leq M} + |L|) + \frac{1}{n}\sum_{i=n_1+1}^n \underbrace{|x_i - L|}_{<\frac{\varepsilon}{2}}\\
&< \frac{n_1(M + |L|)}{n} + \frac{n-n_1}{n}\frac{\varepsilon}{2} \\
&< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
&= \varepsilon
\end{align}
Thus:
$$\lim_{n\to\infty} \frac{1}{n}\sum_{i=1}^n x_i = L$$