I wan to know how to solve this equation where $\rm\ D $ and $\rm\ k $ values are know and I want to find $x$:
$x (x\ mod\ k\ ) ^ 2 \rm\ mod\ k = D$
And I dont know how to start and how to exactly the problem is expressed in math notation. I using the mod of remainder operation no the congruences.
I extract the equation analizing some ofuscated source code the code that looks like
if (x*((x % k) * (x % k))) % k == D ...
I put the code if i made a mistake traslating to math notation .
update
Maybe is not computable after all. But i want to know the teory for the great good. The values are very big:
$\ k=$ 134908246421120481758163246661992595636170321686448474706440739628688109783740860298237556469237969452644490512779389250731193716102265810626226010445308778149257733945246516748118415698788521821626025173366644769118674263043277444473840006708507357109944794039692095527291233717252207868936434225226739116901
$\ D= $
5486124068793688683255936251187209270074392635932332070112001988456197381759672947165175699536362793613284725337872111744958183862744647903224103718245670299614498700710006264535590197791934024641512541262359795191593953928908168990292758500391456212260079471274317399924646987873523990414169975398570173