7

I use $p=41 $ is a prime, so

$\begin{align} (41-1)! &\equiv -1 \mod 41\\ (40)! &\equiv -1 \mod 41\\ 40\times39\times38\times37\times36\times(35)! &\equiv -1 \mod 41\\ (-1)\times(-2)\times(-3)\times(-4)\times(-5)\times(35)! &\equiv -1 \mod 41\\ 120(35)! &\equiv +1 \mod 41\\ (-3)(35)! &\equiv +1 \mod 41\\ (3)(35)! &\equiv -1 \mod 41 \\ (3)(35)! &\equiv -42 \mod 41 \ \to \div 3 \\(35)! &\equiv -14\equiv 27 \mod 41 \\ \end{align}$

IS my work true ? can anyone says another idea ?

Khosrotash
  • 24,922

1 Answers1

-1

with a simple division, $$35!\equiv 27(mod41)$$