Let $\mathbb{Z}_p$ denote the p-adic intergers.I know this is torsion-free Abelian group(i.e. It is flat $\mathbb{Z}$ module).
- I think it is not free Abelian group,but I don't know how to prove this.?
Is $Ext^1_{\mathbb Z}(\mathbb{Z}_p,\mathbb {Z})\neq 0$?
First I select a s.e.s $0\rightarrow \mathbb{Z}_p\rightarrow \prod\mathbb{Z}/p^i\mathbb{Z}\rightarrow^{1-shift}\prod\mathbb{Z} /p^i \mathbb{Z} \rightarrow 0$. But $Ext^1_{\mathbb Z}(\prod \mathbb {Z},\mathbb{Z}\neq 0$,this can see my top vote.Then how should I do?
I am confused.I need your help.Thanks!