2

Okay so this question requires me to sum this series. My problem is however the product of the odd terms that appear in the sequence. I'm not able to write a general term for this sequence.

$$1+\frac{1}{1!}\cdot\frac{1}{4}+\frac{1\cdot3}{2!}\cdot(\frac{1}{4})^2+\frac{1\cdot3\cdot5}{3!}\cdot(\frac{1}{4})^3+........... \infty$$

  • The $\cdot$ represents the product of the two terms.

  • $!$ represents the factorial of the specified number.

My doubt is that after having the general term, how do I manipulate it to get the final sum? It makes no sense to me still.

Any help would be appreciated.Thanks for giving this your time.

Tanuj
  • 830
  • 6
  • 24

2 Answers2

3

$$a_n = 1\cdot3\cdot\dots\cdot(2n-1)\cdot\frac{1}{n!}\frac1{4^n} = \frac{1\cdot2\cdot3\cdot4\dots\cdot2n}{2\cdot4\cdot\dots2n}\frac{1}{n!}\frac1{4^n}=\frac{(2n)!}{2^n(n!)}\frac{1}{n!}\frac1{4^n}$$ $$=\frac{(2n)!}{n!n!}\left(\frac18\right)^n={2n\choose n}\left(\frac18\right)^n$$ So we have to evaluate $$\sum_{n=0}^{\infty}{2n\choose n}\left(\frac18\right)^n$$ Now using $$(1-4x)^{-\frac12}=\sum_{n=0}^{\infty}(-4)^n{-\frac12\choose n}x^n=\sum_{n=0}^{\infty}{2n\choose n}x^n$$ We can conclude $$\sum_{n=0}^{\infty}{2n\choose n}\left(\frac18\right)^n=\sqrt2$$

Kay K.
  • 9,931
1

Hint:

$$1 \times 3 \times 5 = \frac{6!}{2(4)(6)}= \frac{(2 \times 3)!}{2^3(3!)}$$

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149