1

I just need a hint not a whole solution please.

Problem: Let $f ∈ L_1(0, ∞)$ be monotone. Prove that $$ \lim\limits_{x\to \infty}xf(x)=0 $$

Hamit
  • 355

1 Answers1

0

If $f\in L_1(a,\infty)$, then it follows that it is absolutely convergence.

Then $\forall \epsilon >0, \mathbb{exists~}X_0~\mathbb{such~that~for~any~2x>}X_0, by~Cauchy:~ \int_{\frac{x}{2}}^{x}f(t)dt<\epsilon$

Try finding an upper bound for the integral.

An extra hint:

$f$ is monotonic and absolutely convergent, therefore $\lim_{x\to \infty} f(x)=0$ and $\int_{\frac{x}{2}}^{x}f(t)dt\le xf(x)$

Rab
  • 1,176