I just need a hint not a whole solution please.
Problem: Let $f ∈ L_1(0, ∞)$ be monotone. Prove that $$ \lim\limits_{x\to \infty}xf(x)=0 $$
I just need a hint not a whole solution please.
Problem: Let $f ∈ L_1(0, ∞)$ be monotone. Prove that $$ \lim\limits_{x\to \infty}xf(x)=0 $$
If $f\in L_1(a,\infty)$, then it follows that it is absolutely convergence.
Then $\forall \epsilon >0, \mathbb{exists~}X_0~\mathbb{such~that~for~any~2x>}X_0, by~Cauchy:~ \int_{\frac{x}{2}}^{x}f(t)dt<\epsilon$
Try finding an upper bound for the integral.
An extra hint:
$f$ is monotonic and absolutely convergent, therefore $\lim_{x\to \infty} f(x)=0$ and $\int_{\frac{x}{2}}^{x}f(t)dt\le xf(x)$