So I know $\int\frac{1}{x^2+1}dx=\arctan(x)+c$
Now when i tried to integral $\frac{1}{x^2+1}$ in a different way i got this:
$$\frac{1}{x^2+1}=\frac{1}{(x-i)(x+i)}=\frac{A}{x-i}+\frac{B}{x+i}\\\implies1=Ax+Ai+Bx-Bi=x(A+B)+i(A-B)\\\implies \begin{cases} A+B=0 \\[2ex] A-B=\frac{1}{i}=-i \end{cases}\\\implies2A=-i\implies A=\frac{-i}{2}\implies B=\frac{i}{2}$$
So in the end i get:$$\int\frac{1}{x^2+1}dx=\int\frac{i}{2(x+i)}-\frac{i}{2(x-i)}dx=\frac{i}{2}\int\frac{1}{(x+i)}-\frac{1}{(x-i)}dx$$
After integrating this i get $\frac{i}{2}(\ln(x+i)-\ln(x-i)+C)$ after comparing this to $\arctan(x)$ at $x=0$ i find $C=-i\pi$
$\therefore~\arctan(x)=\frac{i}{2}(\ln(x+i)-\ln(x-i)-i\pi)$
now my question is how can i prove that without using the integral