Find Maclaurin Series Expansion of function $\ln(8+x^3)$. For which $x$ series converges? For which $ x $ ,$ f(x)$ equals sum of this series?
$$ (\ln(8+x^3))'=\frac{3x^2}{8+x^3} =\frac{\frac{3}{8}x^2}{1-(-\frac{x^3}{8})}=$$ $$ =\sum_{n=1}^{\infty}\frac{3x^2}{8}(-1)^n\frac{x^{3n}}{8^n}$$ and $$ \sum_{n=1}^{\infty}\int\frac{3x^2}{8}(-1)^n\frac{x^{3n}}{8^n}dx=$$ $$=\sum_{n=1}^{\infty}\frac{(-1)^n3}{8^{n+1}}\int x^{3n+2}dx=$$ $$=\sum_{n=1}^{\infty}\frac{(-1)^n3}{8^{n+1}}\frac{x^{3n+3}}{3n+3}+C$$
for $x=0$ $$\ln(8+0^3)= \sum_{n=1}^{\infty}\frac{(-1)^n3}{8^{n+1}}\frac{0^{3n+3}}{3n+3}+C $$ $$ C=0 $$
$8+x^3>0 $
$x>-2 $
and
$|\frac{-x^3}{8}|<1$
$x<2$
I have to find if it converges only at $x=2$, $x=-2$ is out of domain? For which $x$ series converges? For which $ x $ ,$ f(x)$ equals sum of this series? From Abel theorem $\forall$ x which converges $f(x)$=sum of series?