It's just case $\rm\ p^j = 2^2,\ q^k = 3,\ d = e = 2\ $ of this simple generalization of Euler's little theorem
THEOREM $\ $ For primes $\rm\:p \ne q\:,\:$ naturals $\rm\:e\:$ and $\rm\ j,\ k \:\le\: d\ $
$$\rm\quad\quad\ \phi(p^j),\ \phi(q^k)\ |\ e\ \ \Rightarrow\ \ p^j\ q^k\ |\ n^d\ (n^e - 1)\ \ \ \forall\ n\in \mathbb N $$
Proof $\ $ If $\rm\ p\ |\ n\ $ then $\rm\ p^j\ |\ n^d\ $ by $\rm\ j\le d\:.\:$ Else $\rm\:n\:$ is coprime to $\rm\: p\:,\:$ so by Euler's little theorem we have: $\ $ mod $\rm\ p^j\:,\ \ n^{\phi(p^j)}\equiv 1\ \Rightarrow\ n^e\equiv 1\ $ by $\rm\ \phi(p^j)\ |\ e\:.\ $ Thus $\rm\ n^d\ (n^e - 1)\ $ is divisible by $\rm\ p^j\ $ and, similarly it is divisible by $\rm\ q^k\:,\ $ hence it is also divisible by their lcm = product. $\quad$ QED
In fact for $\rm\ p = 2,\ j > 2\ $ we can use $\rm\ \phi(2^j)/2\ $ vs. $\rm\ \phi(2^j)\ $ because $\rm\ \mathbb Z/2^j\ $ has multiplicative group $\rm\ C(2)\times C(2^{j-2})\ $ for $\rm\ j> 2\:$. Thus, in fact, $\rm\ 24\ |\ n^3\ (n^2 - 1)\:.$ For more see my post on the Fermat-Euler-Carmichael theorem.