Show that if $\gcd(b,c) = 1$ then $\gcd(a,bc) = \gcd(a,b)\gcd(a,c).$
Everyone, I'm stuck on this proof. I know that: $$\gcd(a,bc)=\gcd(a,b)\cdot\gcd(a,c)\gcd(a,bc)\\=\gcd(a,b)\cdot\gcd(a,c),$$ but I don't know how I use $\gcd(b,c)=1$ to get that $\gcd(a,bc)=\gcd(a,b)\cdot\gcd(a,c)$