It is true in general that if $f \in {L}^{1} \left(\mathbb{R}\right)$, then
$${\lim }_{{\epsilon} \rightarrow {0}^{+}} \frac{1}{{\epsilon}} f \left(\frac{{\nu}}{{\epsilon}}\right) = {{\delta}}_{0} \int_{\mathbb{R}}^{}f \left(x\right) d x$$
in the sense of distributions.
Proof: let ${\phi} \in {\mathscr{C}}_{0}^{\infty } \left(\mathbb{R}\right)$, then
$$\left\langle \frac{1}{{\epsilon}} f \left(\frac{\cdot }{{\epsilon}}\right) , {\phi}\right\rangle = \int_{\mathbb{R}}^{}\frac{1}{{\epsilon}} f \left(\frac{{\nu}}{{\epsilon}}\right) {\phi} {(\nu)} d {\nu} = \int_{\mathbb{R}}^{}f \left(x\right) {\phi} \left({\epsilon} x\right) d x$$
In the last integral, $f \left(x\right) {\phi} \left({\epsilon} x\right) \rightarrow f \left(x\right) {\phi} \left(0\right)$ almost everywhere and
one has
$$\left|f \left(x\right) {\phi} \left({\epsilon} x\right)\right| \leqslant \left(\max {|\phi|}\right) \left|f(x)\right| \in {L}^{1} (\mathbb{R})$$
The dominated convergence theorem implies that
$$\left\langle \frac{1}{{\epsilon}} f \left(\frac{\cdot }{{\epsilon}}\right), {\phi}\right\rangle \rightarrow {\phi} (0) \int_{\mathbb{R}}^{}f \left(x\right) d x$$
which proves our claim.
Now your result about Boltzmann follows with ${\epsilon} = \sqrt{T}$ and
$$f \left({\nu}\right) = {\left(\frac{m}{2 {\pi} k}\right)}^{3/2} 4 {\pi} {{\nu}}^{2} \exp \left({-\frac{m}{2 k}} {{\nu}}^{2}\right) {{\chi}}_{{\mathbb{R}}_{ > 0}}(\nu)$$
Edit: some more explanations with a FAQ
1) How does one prove that a family of function ${g}_{{\epsilon}}$ converges to the dirac function?
One proves that for any test functions ${\phi}$,
$$\int_{\mathbb{R}}^{}{g}_{{\epsilon}} \left(x\right) {\phi} \left(x\right) d x \mathop{\longrightarrow}\limits_{{\epsilon} \rightarrow 0} {\phi} \left(0\right)$$
one says that ${g}_{{\epsilon}}$ tends to the dirac measure in the sense of the distributions.
2) What is a test function ?
It is a function infinitely smooth (all its derivatives exist in $\mathbb{R}$) and
its value is identically $0$ outside some interval $\left[a , b\right]$. The set
of tests functions is denoted ${\mathscr{C}}_{0}^{\infty } \left(\mathbb{R}\right)$ or $\mathscr{D} \left(\mathbb{R}\right)$
3) What does the dominated convergence theorem say?
The DCT gives sufficient conditions to prove the following limit of integrals
$$\int_{\mathbb{R}}^{}{g}_{{\epsilon}} \left(x\right) d x \mathop{\longrightarrow}\limits_{{\epsilon} \rightarrow 0} \int_{\mathbb{R}}^{}g \left(x\right) d x$$
These conditions are that a) ${g}_{{\epsilon}} \left(x\right) \mathop{\longrightarrow}\limits g \left(x\right)$ for almost all $x \in \mathbb{R}$, that is to say for all $x$ but at most a set of measure $0$.
b) The integrals $\int_{\mathbb{R}}^{}\left|{g}_{{\epsilon}} \left(x\right)\right| d x$ exist. and c)
there exists some function $h \left(x\right)$ such that $\left|{g}_{{\epsilon}} \left(x\right)\right| \leqslant \left|h \left(x\right)\right|$ and
$h \left(x\right)$ does not depend on ${\epsilon}$ and $\int_{\mathbb{R}}^{}\left|h \left(x\right)\right| d x$ exist.