I proved the inequality shown in the title by using AM-GM and: $$\cos A + \cos B + \cos C \le \frac{3}{2}$$ Equality holds for an equilateral triangle.
For an $n$-sided convex polygon with internal angles $\alpha_1, \alpha_2, \dots, \alpha_n$, it appears to me that $\prod^n_{k=1}1 - \cos\alpha_k$ is maximum when $\alpha_1 = \alpha_2 = \dots = \alpha_n$, i.e. when $\alpha_i = \frac{(n-2)\pi}{n}$, thus $$\prod^n_{k=1}1 - \cos(\alpha_k) \le \cos^n \pi\left(1-\frac{2}{n}\right)$$ How can this inequality be proved or disproved?